Относительная величина уровня экономического развития

УРОВНЯ ЭКОНОМИЧЕСКОГО РАЗВИТИЯ

РАЗНОВИДНОСТЬЮ ОТНОСИТЕЛЬНЫХ ВЕЛИЧИН ИНТЕНСИВНОСТИ являются относительные величины уровня экономического развития.

ОВУЭР — характеризуют размеры производства в расчете на душу населения. Они играют важную роль в оценке развития экономики страны. Для их вычисления необходимо годовой объем производства продукции разделить на среднегодовую численность населения за тот же год.

Пример: ВВП России за 2015 год в рублях составил 67569 млрд. рублей
Общая численность населения России на 1 января 2016 года составляет 146 519 759 человек (с Крымом). Оценить ВВП на душу населения

Решение

Валовой внутренний продукт на душу населения равен:

ЗАМЕЧАНИЕ. Существуют и другие классификации относительных статистических показателей. Так в МЕДИЦИНСКОЙ СТАТИСТИКЕ различают следующие относительные величины:

• интенсивные

• экстенсивные

• показатели соотношения

• показатели наглядности

РЕЗЮМЕ. «ПОВСЕДНЕВНАЯ ЖИЗНЬ-ЭТО ОБЯЗАТЕЛЬНАЯ ШКОЛА ЦИФР: СЛОВАРЬ ДЕБЕТА И КРЕДИТА, НАТУРАЛЬНОГО ОБМЕНА, ЦЕН РЫНКА, КОЛЕБЛЮЩИХСЯ КУРСОВ ДЕНЕГ ЗАХВАТЫВАЕТ И ПОДЧИНЯЕТ ЛЮБОЕ МАЛО-МАЛЬСКИ РАЗВИТОЕ ОБЩЕСТВО» (БРОДЕЛЬ Ф.)

ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ

ЗАДАЧА 2.

В базисном периоде фирма продала 200 автомобилей. По плану на текущий период намечалось продать 210 автомобилей. Фактически в текущем периоде было продано 215 автомобилей. Определите относительные показатели плана, выполнения плана и динамики. Покажите связь между найденными показателями.

РЕШЕНИЕ

Согласно условию имеем:

базисное значение показателя – 200 автомобилей;

планируемое значение показателя – 210 автомобилей;

текущее значение показателя – 215 автомобилей;

Вычисляем:

Относительный показатель плана, используя формулу или

Относительный показатель выполнения (реализации) плана вычисляем по формуле:

или

Для вычисления относительного показателя динамики используем формулу:

или

Для проверки решения задачи используем формулу связи между относительными показателями плана, реализации плана и динамики:

Проверка: , т.е.

3. Относительные величины, их значение и основные виды

получили численное значение относительного показателя динамики.

Ответ: 1) , т.е. фирма планировала увеличить объем продаж автомобилей на 5% (105%-100%)

2) , т.е. фирма продала автомобилей на 2,4% больше планируемого

3) , т.е. объем продаж автомобилей увеличился в текущем периоде на 7,5% по сравнению с базисным периодом.

ЗАДАЧА 3.

Планировалось повысить успеваемость по статистике на 20%. План был перевыполнен на 4%. Определите относительный показатель динамики.

РЕШЕНИЕ

Согласно условию задачи имеем:

Относительный показатель плана равен или 1,2

Относительный показатель реализации плана составил или 1,04

Между относительными показателями плана, реализации плана и динамики существует следующая взаимосвязь:

Поэтому относительный показатель динамики равен: или 124,8%

Ответ: успеваемость по статистике повысилась на 24,8% в текущем периоде по сравнению с базисным.

ЗАДАЧА 4.

Имеются следующие данные о составе работающей молодежи по полу, возрасту и месту проживания:

Показатель Число занятых, тыс. чел. Из них в возрасте, лет
15 – 19 20 – 24 25 – 29
Всего занято в экономике:
городское население
сельское население
мужчины
женщины

Определите:

1) структуру работающей молодежи по полу

2) относительные показатели координации по полу

Сделайте анализ полученных результатов.

Решение

Для ответа на вопросы задачи оставим в таблице данных только первую и две последние строки:

Показатель Число занятых, тыс. чел. Из них в возрасте, лет
15 – 19 20 – 24 25 – 29
Всего занято в экономике:
мужчины
женщины

1) Относительный показатель структуры (ОПС) характеризует состав изучаемых совокупностей, т.е. показывает долю отдельных частей в общем объеме совокупности и вычисляется по формуле:

.

В данном случае показателем по всей совокупности в целом является показатель «всего занято в экономике».

Решение задачи оформим в таблице:

Показатель ОПС, %
в целом Из них в возрасте, лет
16 – 19 21 – 24 26 – 29
Всего занято в экономике:        
мужчины 50,91 61,24 54,85 53,08
женщины 49,09 38,76 45,15 46,92
Итого:

ОПС в данном случае выразили в процентах. Полученные результаты представляют собой удельные веса.

2) Относительные показатели координации (ОПК) характеризуют соотношение отдельных частей целого между собой (и применяются для сравнения различных частей совокупности между собой):

.

В качестве базы сравнения выберем число женщин, занятых в экономике, или удельный вес женщин, занятых в экономике.

Результаты вычислений оформим в таблице:

  в целом Из них в возрасте, лет
16 – 19 21 – 24 26 – 29
       
ОПК 1,04 1,58 1,22 1,13

ОТВЕТ: 1) удельный вес мужчин, занятых в экономике, выше удельного веса женщин, занятых в экономике. Наибольший удельный вес мужчин, занятых в экономике, имеет категория мужчин в возрасте 16-19 лет и составляет 61,24%.

2) ОПК показывает, что на 1 женщину, занятую в экономике приходится 1,58 мужчин в возрасте 16-19 лет (или на 100 женщин приходится 158 мужчин) и т.д.

1.2 СРЕДНИЕ ПОКАЗАТЕЛИ

Средние величины используются на этапе обработки и обобщения полученных первичных статистических данных. Потребность определения средних величин связана с тем, что у различных единиц исследуемых совокупностей индивидуальные значения одного и того же признака, как правило, неодинаковы.

Средние величины – это обобщающие показатели, в которых проявляются общие, закономерные черты, свойственные для всей совокупности изучаемого явления.

В средних величинах погашаются индивидуальные различия в величине признака, и определяется уровень варьирующего признака, типичный для большинства единиц данной совокупности.

Значение средних величин состоит в их обобщающей функции. Средняя величина заменяет большое число индивидуальных значений признака, обнаруживая общие свойства, присущие всем единицам совокупности. Это, в свою очередь, позволяет избежать случайных причин и выявить общие закономерности, обусловленные общими причинами.

ОСНОВНЫМ УСЛОВИЕМ ПРАВИЛЬНОГО ИСПОЛЬЗОВАНИЯ СРЕДНИХ ВЕЛИЧИН ЯВЛЯЕТСЯ КАЧЕСТВЕННАЯ ОДНОРОДНОСТЬ СОВОКУПНОСТИ, ПО КОТОРОЙ РАССЧИТЫВАЕТСЯ СРЕДНЯЯ ВЕЛИЧИНА.



Относительные показатели

Сама по себе абсолютная величина не дает полного представления об изучаемом явлении, не показывает его структуру, соотношение между отдельными частями, развитие во времени. В ней не выявлены соотношения с другими относительными показателями.

Расчет экономических показателей

Эти функции выполняют определяемые на основе абсолютных величин относительные показатели.

Относительный показатель– это обобщающий показатель, который представляет собой результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических процессов и явлений:

текущий / сравниваемый

показатель

основание / база сравнения

Относительные показатели могут выражаться в коэффициентах, процентах, промилле, продецимилле или быть именованными числами. Если база сравнения принимается за 1, то относительный показатель выражается в коэффициентах, если база принимается за 100, 1000 или 10 000, то относительный показатель соответственно выражается в процентах (%), промилле () и продецимилле (%оо).

Все используемые на практике относительные статистические показатели можно разделить на следующие виды:

Относительный показатель динамики(ОПД) представляет собой отношение уровня исследуемого процесса или явления в данный период времени к уровню этого же процесса или явления в прошлом и показывает, во сколько раз текущий уровень превышает предшествующий, или какую долю от него составляет:

При этом если в качестве базы сравнения выбирается уровень явления в начальный момент времени (базисный), то получают базисный показатель, если в качестве базы выбирается уровень явления за предыдущий момент времени, то получают цепной показатель.

Если данный показатель выражен кратным отношением, он называется коэффициентом роста, при домножении этого коэффициента на 100% получают темп роста.

Относительный показатель планового задания (ОППЗ) рассчитывается как отношение уровня, запланированного на будущий период (yпл.), к уровню, фактически сложившемуся в прошлом (y0):

Относительный показатель реализации плана (ОПРП) – определяется как отношение фактически достигнутого уровня в текущем периоде (y1) к запланированному на этот же период (yпл.):

Между относительными показателями планового задания, реализации плана и динамики существует следующая взаимосвязь:

ОППЗ ´ ОПРП = ОПД.

Относительный показатель структуры (ОПС) характеризует долю или удельный вес части совокупности в общем ее объеме:

ОПС выражается простым кратным отношением (в долях единицы) или в процентах.

Относительные показатели координации(ОПК) отражают соотношение отдельных частей целого между собой:

В результате определяют, сколько единиц каждой структурной части приходится на 1 единицу базисной структурной части.

Относительный показатель интенсивности(ОПИ) всегда является именованной величиной и характеризует степень распространения изучаемого процесса или явления в присущей ему среде:

ОПИ вычисляются путем сравнения разноименных величин, находящихся в определенной связи между собой и обычно определяются в расчете на 100, 1000 и т.д. единиц изучаемой совокупности (например, число родившихся на 1000 чел. населения, производство сельскохозяйственной продукции с 1 га сельскохозяйственных угодий и т.д.).

Разновидностью ОПИ являются относительные показатели уровня экономического развития, характеризующие производство продукции в расчете на душу населения.

Относительный показатель сравнения (ОПСр) представляет собой соотношение одноименных абсолютных показателей, характеризующих разные объекты (предприятия, фирмы, районы, области, страны и т.п.), но относящиеся к одному и тому же моменту времени (например, соотношение между уровнями себестоимости одного вида продукции, выпущенной разными предприятиями):

Несмотря на большую значимость относительных величин в статистике, их нельзя рассматривать в отрыве от абсолютных показателей. Лишь комплексное применение эти величин дает достоверную информацию об изучаемых явлениях или процессах.

Средние величины

При анализе и планировании необходимо опираться не на случайные факты, а на показатели, выражающие основное, типичное. Такую характеристику дают средние величины.

Средняя величина – это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

При расчете средней величины индивидуальные значения признака заменяются одним средним значением. При этом случайные отклонения значения признака по отдельным единицам в сторону увеличения или уменьшения взаимно уравновешиваются и погашают друг друга, а в величине средней проявляется типичный размер признака, свойственный данной группе или совокупности в целом, что позволяет выявить закономерности, присущие массовым общественным явлениям, незаметные в единичных явлениях.

Средняя величина всегда именованная, она имеет ту же единицу измерения, что и признак у отдельных единиц совокупности.

В статистике применяют две категории средних:

1. Степенные средние – средняя арифметическая, средняя гармоническая, средняя геометрическая и средняя квадратическая.

2. Структурные средние – мода и медиана.

Степенные средние

Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными.

Простая средняя вычисляется по несгруппированным данным и имеет следующий вид:

,

где хi – значение признака для единицы совокупности i,

m – показатель степени средней,

n – число единиц совокупности.

Взвешенная средняя вычисляется по сгруппированным данным и имеет вид:

,

где хi – значение признака для единицы совокупности i,

m – показатель степени средней,

fi – частота, показывающая, сколько раз встречается i-е значение признака.

Формулы расчета степенных средних имеют общий показатель степени m. В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:

1. Средняя арифметическая (m=1) – наиболее распространенный вид средней.

простая взвешенная

Примечание. Если значения осредняемого признака заданы в виде интервалов, то при расчете средней арифметической величины в качестве значений признаков в группах принимают середины этих интервалов, в результате чего образуется дискретный ряд. При этом величины открытых интервалов условно приравниваются к интервалам, примыкающим к ним.

Свойства средней арифметической:

а) если все индивидуальные значения признака (все варианты) уменьшить или увеличить в m раз, то среднее значение соответственно уменьшится или увеличится в m раз.

б) если все варианты осредняемого признака уменьшить или увеличить на число А, то средняя арифметическая соответственно уменьшится или увеличится на это же число А.

в) если частоты (веса) всех осредняемых вариантов уменьшить или увеличить в k раз, то средняя арифметическая не изменится.

2. Средняя гармоническая (m=-1) – является величиной обратной для средней арифметической и применяется, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение xf.

простая взвешенная
, где w = xf

3. Средняя геометрическая (m=0) – применяется для определения средней по значениям, имеющим большой разброс, либо в случаях определения средней величины по относительным показателям, например, среднегодовых темпов роста в рядах динамики, где индивидуальные значения признака представляют собой коэффициенты роста:

простая взвешенная

1. Средняя квадратическая (m=2) – применяется, когда требуется определить средний размер признака, выраженный в квадратных единицах измерения (для вычисления средней стороны квадратных участков) или при расчете среднего квадратического отклонения, являющегося одним из показателей вариации признаков:

простая взвешенная

Если рассчитать все виды средних для одних и тех же исходных данных, то их значения окажутся неодинаковыми, т. к. здесь действует правиломажорантности средних: чем больше показатель m, тем больше средняя величина:

.

Дата добавления: 2017-11-04; просмотров: 2201;

Относительные показатели

Сама по себе абсолютная величина не дает полного представления об изучаемом явлении, не показывает его структуру, соотношение между отдельными частями, развитие во времени. В ней не выявлены соотношения с другими относительными показателями. Эти функции выполняют определяемые на основе абсолютных величин относительные показатели.

Относительный показатель– это обобщающий показатель, который представляет собой результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических процессов и явлений:

текущий / сравниваемый

показатель

основание / база сравнения

Относительные показатели могут выражаться в коэффициентах, процентах, промилле, продецимилле или быть именованными числами. Если база сравнения принимается за 1, то относительный показатель выражается в коэффициентах, если база принимается за 100, 1000 или 10 000, то относительный показатель соответственно выражается в процентах (%), промилле () и продецимилле (%оо).

Все используемые на практике относительные статистические показатели можно разделить на следующие виды:

Относительный показатель динамики(ОПД) представляет собой отношение уровня исследуемого процесса или явления в данный период времени к уровню этого же процесса или явления в прошлом и показывает, во сколько раз текущий уровень превышает предшествующий, или какую долю от него составляет:

При этом если в качестве базы сравнения выбирается уровень явления в начальный момент времени (базисный), то получают базисный показатель, если в качестве базы выбирается уровень явления за предыдущий момент времени, то получают цепной показатель.

Если данный показатель выражен кратным отношением, он называется коэффициентом роста, при домножении этого коэффициента на 100% получают темп роста.

Относительный показатель планового задания (ОППЗ) рассчитывается как отношение уровня, запланированного на будущий период (yпл.), к уровню, фактически сложившемуся в прошлом (y0):

Относительный показатель реализации плана (ОПРП) – определяется как отношение фактически достигнутого уровня в текущем периоде (y1) к запланированному на этот же период (yпл.):

Между относительными показателями планового задания, реализации плана и динамики существует следующая взаимосвязь:

ОППЗ ´ ОПРП = ОПД.

Относительный показатель структуры (ОПС) характеризует долю или удельный вес части совокупности в общем ее объеме:

ОПС выражается простым кратным отношением (в долях единицы) или в процентах.

Относительные показатели координации(ОПК) отражают соотношение отдельных частей целого между собой:

В результате определяют, сколько единиц каждой структурной части приходится на 1 единицу базисной структурной части.

Относительный показатель интенсивности(ОПИ) всегда является именованной величиной и характеризует степень распространения изучаемого процесса или явления в присущей ему среде:

ОПИ вычисляются путем сравнения разноименных величин, находящихся в определенной связи между собой и обычно определяются в расчете на 100, 1000 и т.д. единиц изучаемой совокупности (например, число родившихся на 1000 чел.

Относительные показатели

населения, производство сельскохозяйственной продукции с 1 га сельскохозяйственных угодий и т.д.).

Разновидностью ОПИ являются относительные показатели уровня экономического развития, характеризующие производство продукции в расчете на душу населения.

Относительный показатель сравнения (ОПСр) представляет собой соотношение одноименных абсолютных показателей, характеризующих разные объекты (предприятия, фирмы, районы, области, страны и т.п.), но относящиеся к одному и тому же моменту времени (например, соотношение между уровнями себестоимости одного вида продукции, выпущенной разными предприятиями):

Несмотря на большую значимость относительных величин в статистике, их нельзя рассматривать в отрыве от абсолютных показателей. Лишь комплексное применение эти величин дает достоверную информацию об изучаемых явлениях или процессах.

Средние величины

При анализе и планировании необходимо опираться не на случайные факты, а на показатели, выражающие основное, типичное. Такую характеристику дают средние величины.

Средняя величина – это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

При расчете средней величины индивидуальные значения признака заменяются одним средним значением. При этом случайные отклонения значения признака по отдельным единицам в сторону увеличения или уменьшения взаимно уравновешиваются и погашают друг друга, а в величине средней проявляется типичный размер признака, свойственный данной группе или совокупности в целом, что позволяет выявить закономерности, присущие массовым общественным явлениям, незаметные в единичных явлениях.

Средняя величина всегда именованная, она имеет ту же единицу измерения, что и признак у отдельных единиц совокупности.

В статистике применяют две категории средних:

1. Степенные средние – средняя арифметическая, средняя гармоническая, средняя геометрическая и средняя квадратическая.

2. Структурные средние – мода и медиана.

Степенные средние

Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными.

Простая средняя вычисляется по несгруппированным данным и имеет следующий вид:

,

где хi – значение признака для единицы совокупности i,

m – показатель степени средней,

n – число единиц совокупности.

Взвешенная средняя вычисляется по сгруппированным данным и имеет вид:

,

где хi – значение признака для единицы совокупности i,

m – показатель степени средней,

fi – частота, показывающая, сколько раз встречается i-е значение признака.

Формулы расчета степенных средних имеют общий показатель степени m. В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:

1. Средняя арифметическая (m=1) – наиболее распространенный вид средней.

простая взвешенная

Примечание. Если значения осредняемого признака заданы в виде интервалов, то при расчете средней арифметической величины в качестве значений признаков в группах принимают середины этих интервалов, в результате чего образуется дискретный ряд. При этом величины открытых интервалов условно приравниваются к интервалам, примыкающим к ним.

Свойства средней арифметической:

а) если все индивидуальные значения признака (все варианты) уменьшить или увеличить в m раз, то среднее значение соответственно уменьшится или увеличится в m раз.

б) если все варианты осредняемого признака уменьшить или увеличить на число А, то средняя арифметическая соответственно уменьшится или увеличится на это же число А.

в) если частоты (веса) всех осредняемых вариантов уменьшить или увеличить в k раз, то средняя арифметическая не изменится.

2. Средняя гармоническая (m=-1) – является величиной обратной для средней арифметической и применяется, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение xf.

простая взвешенная
, где w = xf

3. Средняя геометрическая (m=0) – применяется для определения средней по значениям, имеющим большой разброс, либо в случаях определения средней величины по относительным показателям, например, среднегодовых темпов роста в рядах динамики, где индивидуальные значения признака представляют собой коэффициенты роста:

простая взвешенная

1. Средняя квадратическая (m=2) – применяется, когда требуется определить средний размер признака, выраженный в квадратных единицах измерения (для вычисления средней стороны квадратных участков) или при расчете среднего квадратического отклонения, являющегося одним из показателей вариации признаков:

простая взвешенная

Если рассчитать все виды средних для одних и тех же исходных данных, то их значения окажутся неодинаковыми, т. к. здесь действует правиломажорантности средних: чем больше показатель m, тем больше средняя величина:

.

Дата добавления: 2017-11-04; просмотров: 2200;

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *